Der Artikel ist weiterhin als ^^OTHERCONDITION^^ verfügbar.
Autor: Bharat Bhushan
ISBN-13: 9780387946276
Einband: Buch
Seiten: 1125
Gewicht: 1774 g
Format: 243x163x58 mm
Sprache: Englisch
Erscheinungsdatum: 01.07.1996

Tribology and Mechanics of Magnetic Storage Devices

1. Introduction.- 1.1 Definition and History of Tribology.- 1.1.1 Definition.- 1.1.2 History.- 1.2 Industrial Significance of Tribology.- 1.3 Physics of Magnetic Recording.- 1.3.1 Basic Principle.- 1.3.2 Vertical Recording.- 1.3.3 Methods of Encoding Binary Information.- 1.3.4 Design Considerations.- Recording Density.- Reproduced Signal Amplitude.- Signal-to-Noise Ratio.- 1.4 Magnetic Data-Storage Systems.- 1.4.1 History of Magnetic Recording.- Storage Hierarchy.- 1.4.2 Examples of Modern Data-Storage Systems.- Tape Drives.- Floppy Disk (Diskette) Drives.- Rigid Disk Drives.- 1.4.3 Head Materials.- Permalloys.- Mu-Metal and Hy-Mu 800B.- Sendust Alloys.- Alfenol Alloys.- Amorphous Magnetic Alloys.- Ferrites.- Some Examples of Head Constructions.- 1.4.4 Media Materials.- Flexible Media.- Rigid Disks.- Functional Requirements.- 1.4.5 Manufacturing Processes of Magnetic Media.- Particulate Tapes.- Particulate Floppy Disks.- Rigid Disks.- References.- 2. Solid Surface Characterization.- 2.1 The Nature of Surfaces.- 2.2 Statistical Analysis of Surface Roughness.- 2.2.1 Average Roughness Parameters.- 2.2.2 Probability Distribution and Density Functions.- 2.2.3 Surface Height Distribution Function.- 2.2.4 Texture Descriptors.- 2.2.5 Distribution and Statistics of the Asperities and Valleys.- 2.2.6 Practical Considerations in Measurement of Roughness Parameters.- Long- and Short-Wavelength Filtering.- Measuring Length.- 2.3 Measurement of Surface Roughness.- 2.3.1 Mechanical Stylus Method.- Surface Mapping.- Measurement of Circular Surfaces.- Relocation.- Replication.- Sources of Errors.- 2.3.2 Optical Methods.- Taper-Sectioning Method.- Light-Sectioning Method.- Specular Reflection Methods.- Diffuse Reflection (Scattering) Methods.- Speckle Pattern.- Optical Interference Methods.- Digital Optical Profiler.- 2.3.3 Fluid Methods.- 2.3.4 Electrical Methods.- 2.3.5 Electron Microscopy Methods.- Reflection Electron Microscopy.- Integration of Backscattered Signal.- Stereomicroscopy.- 2.3.6 Scanning Tunneling Microscopy.- 2.3.7 Atomic Force Microscopy.- 2.3.8 Comparison of Measurement Methods.- 2.4 Measurement of Isolated Asperities.- 2.4.1 Optical Methods.- 2.4.2 Glide Test Methods.- 2.5 Physico-Chemical Characteristics of Surface Layers.- 2.5.1 Deformed Layer.- 2.5.2 Bielby Layer.- 2.5.3 Chemically-Reacted Layer.- 2.5.4 Physisorbed Layer.- 2.5.5 Chemisorbed Layer.- 2.5.6 Surface Tension, Surface Energy, and Wetting.- 2.5.7 Methods of Surface Characterization.- References.- 3. Contact between Solid Surfaces.- 3.1 Physical Properties of Polymers.- 3.1.1 Physical States of Polymers.- 3.1.2 Complex Modulus and Compliance.- 3.1.3 Creep and Relaxation Behavior.- 3.1.4 Temperature and Frequency Effects.- 3.2 Apparent and Real Area of Contact.- 3.3 Analysis of the Real Area of Contact.- 3.3.1 Elastic Contact.- 3.3.2 Limit of Elastic Deformation.- 3.3.3 Optimization of Mechanical Properties and Surface Roughness Parameters of Magnetic Media.- 3.3.4 Calculations of the Real Areas of Contact of Typical Particulate Magnetic Tapes.- Experimental Evidence of Elastic Contacts in Magnetic Tapes.- Changes in Contact Area Because of Tape-Surface Wear.- 3.3.5 Calculations of the Real Area of Contact of Typical Magnetic Rigid Disks.- Optimization of Relative Young s Moduli of Thin-Film Composite Structure.- 3.4 Measurement of the Real Area of Contact.- 3.4.1 Review of Measurement Techniques.- Electrical-Contact Resistance.- Optical Techniques.- Ultrasonic Technique.- Neutrographic Technique.- Paints and Radioactive Traces.- 3.4.2 Comparison of Different Measurement Techniques.- Calculation for Overestimation of the Contact Area by Various Optical Techniques.- Feasibility of Phase-Contrast Microscopy.- Selection of Optimum Measurement Technique.- 3.4.3 Measurement of Typical Magnetic Tapes.- Test Apparatus and Procedure.- Results and Discussion.- References.- 4. Friction.- 4.1 Introduction.- 4.2 Need for Controlled Friction.- 4.3 Friction Theories.- 4.3.1 T
Since January 1990, when the first edition ofthis first-of-a-kind book appeared, there has been much experimental and theoretical progress in the multi disciplinary subject of tribology and mechanics of magnetic storage devices. The subject has matured into a rigorous discipline, and many university tribology and mechanics courses now routinely contain material on magnetic storage devices. The major growth in the subject has been on the micro- and nanoscale aspects of tribology and mechanics. Today, most large magnetic storage industries use atomic force microscopes to image the magnetic storage components. Many companies use variations of AFMs such as friction force microscopes (FFMs) for frictional studies. These instruments have also been used for studying scratch, wear, and indentation. These studies are valuable in the fundamental understanding of interfacial phenomena. In the second edition, I have added a new chapter, Chapter 11, on micro and nanoscale aspects of tribology and mechanics of magnetic storage compo nents. This chapter presents the state of the art of the micro/nanotribology and micro/nanomechanics of magnetic storage components. In addition, typographical errors in Chapters 1 to 10 and the appendixes have been corrected. These additions update this book and make it more valuable to researchers of the subject. I am grateful to many colleagues and particularly to my students, whose work is reported in Chapter 11. I thank my wife, Sudha, who has been forbearing during the progress of the research reported in this chapter.
Autor: Bharat Bhushan
Dr. Bharat Bhushan received an M.S. in mechanical engineering from the Massachusetts Institute of Technology in 1971, an M.S. in mechanics and a Ph.D. in mechanical engineering from the University of Colorado at Boulder in 1973 and 1976, respectively, an MBA from Rensselaer Polytechnic Institute at Troy, NY in 1980, Doctor Technicae from the University of Trondheim at Trondheim, Norway in 1990, a Doctor of Technical Sciences from the Warsaw University of Technology at Warsaw, Poland in 1996, and Doctor Honoris Causa from the Metal-Polymer Research Institute of National Academy of Sciences at Gomel, Belarus in 2000. He is a registered professional engineer (mechanical) and presently an Ohio Eminent Scholar and The Howard D. Winbigler Professor in the Department of Mechanical Engineering, Graduate Research Faculty Advisor in the Department of Materials Science and Engineering, and the Director of the Nanotribology Laboratory for Information Storage & MEMS/NEMS (NLIM) at the Ohio State University, Columbus, Ohio. He is an internationally recognized expert of tribology on the macro- to nanoscales, and is one of the most prolific authors in the field. He is considered by some a pioneer of the tribology and mechanics of magnetic storage devices and a leading researcher in the fields of nanotribology and nanomechanics using scanning probe microscopy and applications to micro/nanotechnology.

Zu diesem Artikel ist noch keine Rezension vorhanden.
Helfen sie anderen Besuchern und verfassen Sie selbst eine Rezension.



Autor: Bharat Bhushan
ISBN-13:: 9780387946276
ISBN: 0387946276
Erscheinungsjahr: 01.07.1996
Gewicht: 1774g
Seiten: 1125
Sprache: Englisch
Auflage 00002, 1996
Sonstiges: Buch, 243x163x58 mm